Research Statement
Eva G. Goedhart

My research is in Algebraic Number Theory, more specifically in Diophantine Analysis, the study of Diophantine equations and inequalities. A Diophantine equation is an equation with integer (or rational) coefficients that is to be solved in integers (or rational numbers). A focus of study for hundreds of years, Diophantine Analysis remains a vibrant area of research. It has yielded a multitude of beautiful results and has wide ranging applications in other areas of mathematics, in cryptography, and in the natural sciences.

In my dissertation, I prove that the equations in some specific families of Diophantine equations have no positive integer solutions. In general, I accomplish this by assuming a hypothetical solution exists and then applying various techniques to reach a contradiction. As a straightforward example, suppose that \(a, b, c \) are positive integers such that \(2^a + 3^b = 4^c \). Since \(2^a \) is even and \(3^b \) is odd, the left side of the equation is odd while the right side is even, a contradiction. Therefore the equation \(2^x + 3^y = 4^z \) has no solutions in positive integers. Though this type of argument is a common technique used throughout Diophantine Analysis, typical problems require much more complicated methods.

Below, I present the three main theorems from my dissertation [8] (see also [9–11]), and two problems that I am currently working on. For each, I give some context and briefly describe the primary method that I use in the proof. In the next section, I state one of the results on bounding linear recurrences from my Master’s research [4–6]. Finally, I describe my plans for future work including some projects appropriate for undergraduate research.

Dissertation Research

Equations of the form \((x^k - 1)(y^k - 1) = (z^k - 1)\) and \((x^k - 1)(y^k - 1) = (z^k - 1)^2\) with \(k \geq 4 \), have no solutions [2]. In the theorem below, I prove that equations in a generalization of the second family have no solutions.

Theorem 1 Let \(a, b, c, k \in \mathbb{Z}^+ \) with \(k \geq 7 \). The equation

\[
(a^2cx^k - 1)(b^2cy^k - 1) = (abcz^k - 1)^2
\]

has no solutions in integers \(x, y, z > 1 \) with \(a^2x^k \neq b^2y^k \).

I prove Theorem 1 using Diophantine approximation, the study of how closely an irrational number \(\alpha \) can be approximated by a rational number \(\beta \). There are numerous results providing lower bounds of \(|\alpha - \beta| \) in terms of the denominator of \(\beta \). One way to apply this method is to construct an \(\alpha \) and \(\beta \) from a given hypothetical solution such that \(|\alpha - \beta| \) is small. For example, in the proof of Theorem 1, I use
\(\alpha = \sqrt[3]{a^2c/(a^2cx^k - 1)} \) and \(\beta = y/z^2 \). Applying known bounds on \(|\alpha - \beta| \) for particular types of \(\alpha \) can often result in a contradiction to most of the cases, usually leaving a finite number of possible values of \(\alpha \) and \(\beta \). For these, if the difference \(|\alpha - \beta| \) is small enough then \(\beta \) must be a convergent of the continued fraction expansion of \(\alpha \). Then computations and standard properties of continued fractions may lead to a contradiction.

Families of equations such as \(X^2 + D = Y^N \), where \(D \) is a product of powers of a small number of primes have been studied for decades. More recently, there has been interest in the related family of equations, \(NX^2 + 2^K = Y^N \), showing that under certain conditions there are no solutions [13,17].

Theorem 2 Let \(N > 1 \) be an integer. Then the equation

\[NX^2 + 2^L 3^M = Y^N \]

has no solutions with \(L, M, X, Y \in \mathbb{Z}^+ \) and \(\gcd(NX,Y) = 1 \).

I use defective Lehmer pairs in proving Theorem 2. A pair of algebraic integers is called a Lehmer pair if their quotient is not a root of unity and their product and square of their sum are nonzero coprime rational integers. The Lehmer pair is called \(t \)-defective, for \(t \in \mathbb{Z}^+ \), if the pair has a certain property depending on the divisors of a number constructed from the Lehmer pair. For almost all \(t \in \mathbb{Z}^+ \), the \(t \)-defective Lehmer pairs have been enumerated [1]. Comparing a \(t \)-defective Lehmer pair for some \(t \), constructed from a hypothetical solution, to the list of known defective Lehmer pairs can lead to a contradiction.

The Tijdeman-Zagier conjecture states that \(x^p + y^q = z^r \) has no solutions in positive integers when \(p, q, r > 2 \) and \(\gcd(x,y,z) = 1 \). For \(N = 2, 3, \) and \(5 \) the family \(X^{2N} + Y^2 = Z^5 \) has no solutions [3,7,16]. I extend this work to all \(N > 1 \) when \(Y \) is a product of powers of 2, 5, and an arbitrary prime \(p \).

Theorem 3 Let \(p \) be an odd prime, \(\alpha \geq 1 \), and \(\beta, \gamma \geq 0 \) be integers. The equation

\[X^{2N} + 2^{2\alpha} 5^{2\beta} p^{2\gamma} = Z^5 \]

has no solutions with \(X, Z, N \in \mathbb{Z}^+ \), \(N > 1 \), and \(\gcd(X,Z) = 1 \).

The proof of Theorem 3, relies on the modular approach, a method that evolved from the proof of Fermat’s Last Theorem. In particular, working with a fixed hypothetical solution, there exists an elliptic curve \(E \) (often called a Frey curve), whose coefficients depend only on the given solution. If \(E \) exists, then through rather deep results on Galois representation theory, \(E \) must arise from a newform, \(f \) of level \(N_n \) where \(N_n \) divides the conductor of \(E \). The newform, \(f \), captures valuable information about the solution that can be used to achieve a contradiction.
CURRENT RESEARCH

As a continuation of Theorem 3, Helen G. Grundman and I are extending the result to include any even number Y rather than an even number with at most one prime divisor other than 5, as currently stated.

Another line of research stemming from the Tijdeman-Zagier conjecture concerns families of equations in which the base numbers are related to each other. For example, $(am - 1)^x + m^y = (am + 1)^z$ has no solutions for $x > 2$ and a odd [14]. When a is even, the equation below can be reformulated so that I can consider the following problem.

Problem 1 Let $a, k \in \mathbb{Z}^+$ with $a > 1$ odd. For what values of k does the equation

$$(2^k am - 1)^x + m^y = (2^k am + 1)^z$$

have no solutions $m, x, y, z \in \mathbb{Z}^+$ with $x > 2$.

I have begun work on Problem 1 and a variant there of, utilizing *linear forms in logarithms*. A linear form in logarithms is a linear combination of logarithmic terms, $b_1 \log \alpha_1 + \ldots + b_n \log \alpha_n$ where α_i are algebraic numbers and b_i are integers. From a hypothetical solution to a Diophantine equation one constructs a linear form in logarithms that can be bounded above and below in such a way as to produce bounds on the values of the variables. Various methods, including continued fractions, can be used on the remaining cases.

MASTER’S RESEARCH

The Fibonacci sequence is a very basic example of a sequence generated by a *second-order linear recurrence* or *difference equation*. In my Master’s thesis, I studied both second-order recurrences and third-order difference equations. For each type of recurrence, I find explicit and often sharp upper bounds for the sequences. For example, below is the statement of a result giving an explicit bound on a second-order linear recurrence.

Theorem 4 For $k > 1$, define the sequence $\{b_k\}$ with initial values $b_0 = 0$, $b_1 = -1$, and coefficients $\alpha_k, \beta_k \in [0, A]$ by the recurrence

$$b_k + \alpha_k b_{k-1} + \beta_k b_{k-2} = 0.$$

For a given $n \geq 76$, write $n - 1 = 15q + r$ with $q, r \in \mathbb{Z}$ such that $0 \leq r \leq 14$. If $\frac{2}{3} < A < \frac{3}{4}$, then $|b_n| \leq U_n$ where

$$U_n = \begin{cases} 2^{-4r+10\lfloor \frac{A}{2} \rfloor + 10q + 3q-7\lfloor \frac{A}{4} \rfloor - 7} A^{9q + r - \lfloor \frac{A}{4} \rfloor - 1}, & \text{if } r \equiv 2 \pmod{5}, \\ 2^{2r-5\lfloor \frac{A}{2} \rfloor} 3^{3q-r+3\lfloor \frac{A}{4} \rfloor} A^{9q + r - \lfloor \frac{A}{4} \rfloor}, & \text{otherwise.} \end{cases}$$

3
Future Research

Below, I describe my plans for further extending my dissertation work along with some new directions that I will investigate.

I will examine the generalization of Theorem 1 in which \(x, y, z \) are allowed to be negative with absolute value greater than one. I have confidence that the same methods will apply, though the proof will require more careful estimates. If, on the other hand, \(|x| = 1\), then the basic structure of the equation is changed. I believe some progress can still be made, using the modular approach.

Also for Theorem 1, I hope to prove that there are no solutions when \(4 \leq k \leq 6 \). I think that the proof of Theorem 1 will easily adapt to the case \(k = 6 \), but I expect that the other cases will require additional methods.

Theorem 3 is a special case of the family \(C^2X^{2N} + 2^{2a_5}5^{2\gamma}p^{2\gamma} = Z^5 \) with \(C \in \mathbb{Z} \). I have noticed that for some values of \(C \) modifying the proof of Theorem 3 is quite straightforward. I hope to blend Lehmer number techniques with the modular approach in order to deal with other values of \(C \).

New directions for my research include exploring different families of equations and new methods. For example, the family of equations \(1^k + 2^k + \ldots + x^k = y^n \) has been studied for over a century. It has been solved for \(1 \leq k < 170 \) for \(n \) even [15], using local methods, the modular approach, linear forms in logarithms, elliptic curves, computer calculations, and previously known results. I will examine variations of this family using similar techniques.

In another direction, I am interested in proving that certain equations have infinitely many solutions. For example, for \(n \in \mathbb{Z}^+ \), the equations \(x^4 \pm ny^3 = z^2 \), have infinitely many coprime solutions [12].

Lastly, I list a few possible projects that are accessible to undergraduate students.

Student Project 1 Suppose \(k, n, x, y \in \mathbb{Z}^+ \) such that \(n > 1 \) and \(nx^2 + 3^{2k} = y^n \) with \(\gcd(nx, y) = 1 \). If \(n \equiv 7 \pmod{8} \), prove that \(y \) is odd. Given that \(nu^2 + v^2 = y^s \) and \(x\sqrt{-n} + 3^k = \pm(u\sqrt{-n} + v)^t \) such that \(n = st, t > 1, \) and \(\gcd(u, v) = 1 \), prove that 3|\(u \) or 3|\(v \). Given \(\gamma = 3^k + u\sqrt{-n} \) and \(\delta = -3^k + u\sqrt{-n} \), prove that \((\gamma, \delta)\) is a \(t \)-defective Lehmer pair. Prove that \(t \neq 5 \).

Student Project 2 Suppose \(\ell > 1, m, n, x, y \in \mathbb{Z}^+ \) such that \(n > 1 \) and \(nx^2 + 2^{2\ell+1}5^{2m} = y^n \) with \(\gcd(nx, y) = 1 \). In which number field can you factor the left hand side? Prove those factors are relatively prime using the norms of their sum and product. Given that \(2^\ell 5^m \sqrt{2} + x\sqrt{-n} = (u\sqrt{2} + v\sqrt{-n})^t \) with \(t|2n \), prove that \(u|2^\ell 5^m \) and \(\gcd(v, 10) = 1 \). If \(\gamma = 2^\ell 5^m \sqrt{2} + v\sqrt{-n} \), then what must \(\delta \) be in order for \((\gamma, \delta)\) to be a Lehmer pair?

Student Project 3 Suppose \(x, y, z \in \mathbb{Z}^+ \) such that \((x^5 - 2)(y^5 - 2) = (z^5 - 2)^2\). Given that \(\alpha = \sqrt[5]{1/(x^5 - 1)} \) and \(\beta = y/z^2 \), can you prove that \(\beta \) is a convergent
of the continued fraction expansion of α. Given that $\beta = p_j/q_j$ and given an upper bound for z, derive an upper bound for q_j. Further, given an upper bound for z, derive a lower bound for the partial quotients of α. Use a computer to calculate the first ten partial quotients, a_j of α. Compute q_j of α for $1 \leq j \leq 10$.

References

